Menu

Blog

Archive for the ‘cosmology’ category

May 15, 2024

Tomato Genetics: A Unexpected Journey Into a “Parallel Universe”

Posted by in categories: cosmology, genetics

In a new study recently published by Science Advances, Michigan State University researchers reveal an unexpected genetic revelation about the sugars found in “tomato tar,” shedding light on plant defense mechanisms and their potential applications in pest control.

Tomato tar, a familiar nuisance of avid gardeners, is the sticky, gold-black substance that clings to hands after touching the plant. It turns out that the characteristic stickiness of the substance serves an important purpose. It’s made of a type of sugar called acylsugar that acts as a natural flypaper for would-be pests. “Plants have evolved to make so many amazing poisons and other biologically active compounds,” said Michigan State researcher Robert Last, leader of the study. The Last lab specializes in acylsugars and the tiny, hair-like structures where they’re produced and stored, known as trichomes.

In a surprising discovery, researchers have found acylsugars, once thought to be found exclusively in trichomes, in tomato roots as well. This finding is a genetic enigma that raises as many questions as it does insights.

May 14, 2024

XMM-Newton’s Stunning X-Ray Vision Unmasks Mysterious Cosmic Structure

Posted by in category: cosmology

New observations reveal that X-ray emissions from the Cloverleaf odd radio circle are linked to merging galaxy groups, offering new insights into these mysterious cosmic structures.

Astronomers have discovered enormous circular radio features of unknown origin around some galaxies. Now, new observations of one dubbed the Cloverleaf suggest it was created by clashing groups of galaxies.

Studying these structures, collectively called ORCs (odd radio circles), in a different kind of light offered scientists a chance to probe everything from supersonic shock waves to black hole behavior.

May 12, 2024

AI and Physics Combine to Reveal the 3D Structure of a Flare Erupting around a Black Hole

Posted by in categories: cosmology, physics, robotics/AI

Scientists believe the environment immediately surrounding a black hole is tumultuous, featuring hot magnetized gas that spirals in a disk at tremendous speeds and temperatures. Astronomical observations show that within such a disk, mysterious flares occur up to several times a day, temporarily brightening and then fading away.

Now a team led by Caltech scientists has used telescope data and an artificial intelligence (AI) computer-vision technique to recover the first three-dimensional video showing what such flares could look like around SagittariusA* (Sgr A the supermassive black hole at the heart of our own Milky Way galaxy.

The 3D flare structure features two bright, compact features located about 75 million kilometers (or half the distance between Earth and the sun) from the center of the black hole. It is based on data collected by the Atacama Large Millimeter Array (ALMA) in Chile over a period of 100 minutes directly after an eruption seen in Xray data on April 11, 2017.

May 12, 2024

Giant Structure Lurking in Deep Space Challenges Our Understanding of The Universe

Posted by in categories: cosmology, space travel

A colossal structure in the distant Universe is defying our understanding of how the Universe evolved.

In light that has traveled for 6.9 billion years to reach us, astronomers have found a giant, almost perfect ring of galaxies, some 1.3 billion light-years in diameter. It doesn’t match any known structure or formation mechanism.

Continue reading “Giant Structure Lurking in Deep Space Challenges Our Understanding of The Universe” »

May 11, 2024

Nick Bostrom’s ‘Deep Utopia’ On Our AI Future: Can We Have Meaning And Fun?

Posted by in categories: cosmology, robotics/AI

A new book by Nick Bostrom is a major publishing and cultural event. His 2014 book, Superintelligence, helped to wake the world up to the impact of the first Big Bang in AI, the arrival of deep learning. Since then we have had a second Big Bang in AI, with the introduction of transformer systems like GPT-4. Bostrom’s previous book focused on the downside potential of advanced AI. His new one explores the upside.

Deep Utopia is an easier read than its predecessor, although its author cannot resist using some of the phraseology of professional philosophers, so readers may have to look up words like “modulo” and “simpliciter.” Despite its density and its sometimes grim conclusions, Superintelligence had a sprinkling of playful self-ridicule and snark. There is much more of this in the current offering.

The structure of Deep Utopia is deeply odd. The book’s core is a series of lectures by an older version of the author, which are interrupted a couple of times by conflicting bookings of the auditorium, and once by a fire alarm. The lectures are attended and commented on by three students, Kelvin, Tessius and Firafax. At one point they break the theatrical fourth wall by discussing whether they are fictional characters in a book, a device reminiscent of the 1991 novel Sophie’s World.

May 11, 2024

All Human Existence May Have Begun in a Black Hole, Some Scientists Believe

Posted by in categories: cosmology, evolution

There’s an intriguing possibility that the emergence of conscious life is not just a coincidence, but an inevitable outcome of cosmic evolution.

May 11, 2024

How do we know how much dark matter there is in the Universe?

Posted by in categories: cosmology, physics

AD — Go to https://ground.news/drbecky to stay fully informed with the latest Space and Science news. Subscribe through my link to get 40% off the Vantage plan for unlimited access this month only. | I often get asked how do we know dark matter exists? Which is why I’ve made a video on all the observational evidence we have before (linked below)! But occasionally I’ll get asked how do we know how much dark matter there is, which is a really fun question. There’s many different ways we can calculate this, including the ratio between normal (baryonic) and dark matter, but in this video I just wanted to highlight three different ways astrophysicists calculate this.

Here’s my previous video on all the evidence we have for dark matter — • All the evidence we have for dark mat…
My previous video on whether dark matter could be made of black holes — • Is dark matter made of black holes?
My previous video on whether black holes contain dark matter — • Do black holes contain dark matter?
My previous video on why galaxies merge if the universe is expanding — • If the Universe is expanding, then wh…

Continue reading “How do we know how much dark matter there is in the Universe?” »

May 11, 2024

This Black Hole Is Really Taking Its Time Eating a Poor Star

Posted by in category: cosmology

On November 14, 2014, a telescope spotted a burst of light in a galaxy 570 million light-years away. It was thought to be a supernova, an arrestingly bright explosion that marks a star’s death. This week, astronomers revealed that the burst was not a supernova after all, but rather a black hole having dinner—one of…

May 10, 2024

Astronomers spot ‘sleeping giant’ black hole Gaia BH3 in Milky Way

Posted by in categories: cosmology, materials

The newfound black hole, an intense, light-trapping abyss which has been named Gaia BH3, lurks just 1,926 light-years from Earth in the Aquila constellation. (That makes it the second closest black hole to Earth after Gaia BH1, which resides at 1,500 light-years away and is three times lighter than Gaia BH3.) The so-called “sleeping giant” — so named because unlike its ilk, the dormant black hole doesn’t appear to be shredding its companion star to pieces — birthed out of the imminent collapse of a once-massive star. It is the first direct link between a black hole and a progenitor star that was deprived of metals heavier than hydrogen and helium, according to the new study published in April in the journal Astronomy and Astrophysics.

The discovery confirms a leading theory of stellar evolution that posits high-mass black holes are remnants of stars that are low on metals. Such metal-poor stars have damped mass-eroding winds compared to their metal-rich counterparts, and thus have more material available to form heavier black holes. Astronomers normally time announcements of science discoveries at the same time as data release, in this case no sooner than early 2026, but “you cannot hide this kind of discovery from the community for two years,” says Panuzzo. “It is a unique case of publication based on the preliminary data because the data is exceptional and also something that’s very interesting for the community.”

May 9, 2024

‘Superfluid spacetime’ points to unification of physics

Posted by in categories: computing, cosmology, particle physics, quantum physics

Since superfluid light exists in computers I think frankly we may already solve the theory of everything because the missing piece is infinity in all things which solves all future problems.


Thinking of spacetime as a liquid may be a helpful analogy. We often picture space and time as fundamental backdrops to the universe. But what if they are not fundamental, and built instead of smaller ingredients that exist on a deeper layer of reality that we cannot sense? If that were the case, spacetime’s properties would “emerge” from the underlying physics of its constituents, just as water’s properties emerge from the particles that comprise it. “Water is made of discrete, individual molecules, which interact with each other according to the laws of quantum mechanics, but liquid water appears continuous and flowing and transparent and refracting,” explains Ted Jacobson, a physicist at the University of Maryland, College Park. “These are all ‘emergent’ properties that cannot be found in the individual molecules, even though they ultimately derive from the properties of those molecules.”

Physicists have been considering this possibility since the 1990s in an attempt to reconcile the dominant theory of gravity on a large scale — general relativity — with the theory governing the very smallest bits of the universe—quantum mechanics. Both theories appear to work perfectly within their respective domains, but conflict with one another in situations that combine the large and small, such as black holes (extremely large mass, extremely small volume). Many physicists have tried to solve the problem by ‘quantizing’ gravity — dividing it into smaller bits, just as quantum mechanics breaks down many quantities, such as particles’ energy levels, into discrete packets. “There are many attempts to quantize gravity—string theory and loop quantum gravity are alternative approaches that can both claim to have gone a good leg forward,” says Stefano Liberati, a physicist at the International School for Advanced Studies (SISSA) in Trieste, Italy.

Continue reading “‘Superfluid spacetime’ points to unification of physics” »

Page 1 of 36912345678Last