Menu

Blog

Archive for the ‘information science’ category: Page 4

May 1, 2024

Machine learning and theory

Posted by in categories: information science, mathematics, particle physics, quantum physics, robotics/AI

Theoretical physicists employ their imaginations and their deep understanding of mathematics to decipher the underlying laws of the universe that govern particles, forces and everything in between. More and more often, theorists are doing that work with the help of machine learning.

As might be expected, the group of theorists using machine learning includes people classified as “computational” theorists. But it also includes “formal” theorists, the people interested in the self-consistency of theoretical frameworks, like string theory or quantum gravity. And it includes “phenomenologists,” the theorists who sit next to experimentalists, hypothesizing about new particles or interactions that could be tested by experiments; analyzing the data the experiments collect; and using results to construct new models and dream up how to test them experimentally.

In all areas of theory, machine-learning algorithms are speeding up processes, performing previously impossible calculations, and even causing theorists to rethink the way theoretical physics research is done.

Apr 30, 2024

RIKEN Selects IBM’s Next-Generation Quantum System to be Integrated with the Supercomputer Fugaku

Posted by in categories: business, economics, information science, internet, quantum physics, supercomputing

ARMONK, N.Y., April 30, 2024 — Today, IBM (NYSE: IBM) has announced an agreement with RIKEN, a Japanese national research laboratory, to deploy IBM’s next-generation quantum computer architecture and best-performing quantum processor at the RIKEN Center for Computational Science in Kobe, Japan. It will be the only instance of a quantum computer co-located with the supercomputer Fugaku.

This agreement was executed as part of RIKEN’s existing project, supported by funding from the New Energy and Industrial Technology Development Organization (NEDO), an organization under Japan’s Ministry of Economy, Trade and Industry (METI)’s “Development of Integrated Utilization Technology for Quantum and Supercomputers” as part of the “Project for Research and Development of Enhanced Infrastructures for Post 5G Information and Communications Systems.” RIKEN has dedicated use of an IBM Quantum System Two architecture for the purpose of implementation of its project. Under the project RIKEN and its co-PI SoftBank Corp., with its collaborators, University of Tokyo, and Osaka University, aim to demonstrate the advantages of such hybrid computational platforms for deployment as services in the future post-5G era, based on the vision of advancing science and business in Japan.

In addition to the project, IBM will work to develop the software stack dedicated to generating and executing integrated quantum-classical workflows in a heterogeneous quantum-HPC hybrid computing environment. These new capabilities will be geared towards delivering improvements in algorithm quality and execution times.

Apr 30, 2024

How GenAI Can Improve The Shopper Experience

Posted by in category: information science

More information and choice may be welcomed by some consumers, however, for many others, they’re having to increase the time and effort needed to cut through the noise to decide on what to buy, so much so, they abandon the shopping basket completely.

The data backs this up. In the last three months of 2023, Accenture research found that just under three quarters (73%) of consumers reported being inundated by too much choice, and 75% reported feeling bombarded by advertising. This issue of “information overload” led to a similar number (74%) walking away from purchases because they felt overwhelmed.

It’s easy to see why. The endless number of choices, messages, ads and claims consumers now face, coupled with recommendations from friends, family, influencers, algorithms and apps is only adding to the noise.

Apr 30, 2024

Scientists rework Schrödinger’s cat equation to unite Einstein’s relativity and quantum mechanics

Posted by in categories: information science, quantum physics

A new study proposes modifications to the fundamental equation of quantum mechanics, potentially bridging the gap between these two seemingly contradictory frameworks.

Apr 30, 2024

Do Magnetic Monopoles Exist?

Posted by in categories: information science, particle physics, quantum physics

The elegant equations of classical electromagnetism written by James Clark Maxwell in 1861 display a remarkable symmetry between electric and magnetic fields except for their sources. We know about electric charges but we have not found magnetic charges. Bar magnets are dipoles with two poles, north and south, for the magnetic field, resembling the configuration of an electric field sourced by a pair of positive and negative electric charges. However, we had never seen experimental evidence for a magnetic monopole, namely a magnetic charge with only one magnetic pole, a net north or south, from where magnetic field lines emanate, just like the electric field sourced by an electric charge. In a symmetric theory of electromagnetism, magnetic monopoles should exist.

The existence of monopoles with a net magnetic charge was proposed by Paul Dirac in 1931 to explain the quantized (discrete) values of electric charges. Dirac found that magnetic charges should be an integer multiple of a fundamental unit, g_D, equal to the electron charge, e, divided by twice the fine-structure constant, or about 68.5e.

In classical physics, the existence of magnetic monopoles restores symmetry to Maxwell’s equations. But in the broader context of quantum mechanics, Gerard ‘t Hooft and Alexander Polyakov showed in 1974 that magnetic monopoles are required in Grand Unified Theories of the strong, weak and electromagnetic interactions. Since the electric charge is quantized, magnetic charges are unavoidable in these theories. Magnetic charges with the lowest mass must be stable because magnetic charge is conserved and they cannot decay into lower-mass particles.

Apr 29, 2024

Resurrection through simulation: questions of feasibility, desirability and some implications

Posted by in categories: computing, cryonics, information science, life extension, neuroscience

Could a future superintelligence bring back the already dead? This discussion has come up a while back (and see the somewhat related); I’d like to resurrect the topic because … it’s potentially quite important.

Algorithmic resurrection is a possibility if we accept the same computational patternist view of identity that suggests cryonics and uploading will work. I see this as the only consistent view of my observations, but if you don’t buy this argument/belief set then the rest may not be relevant.

The general implementation idea is to run a forward simulation over some portion of earth’s history, constrained to enforce compliance with all recovered historical evidence. The historical evidence would consist mainly of all the scanned brains and the future internet.

Apr 29, 2024

Russellian Monism (Stanford Encyclopedia of Philosophy)

Posted by in categories: information science, neuroscience, physics

Russellian monism is a theory in the metaphysics of mind, on which a single set of properties underlies both consciousness and the most basic entities posited by physics. The theory is named for Bertrand Russell, whose views about consciousness and its place in nature were informed by a structuralist conception of theoretical physics. On such a structuralist conception, physics describes the world in terms of its spatiotemporal structure and dynamics (changes within that structure) and says nothing about what, if anything, underlies that structure and dynamics. For example, as it is sometimes put, physics describes what mass and charge do, e.g., how they dispose objects to move toward or away from each other, but not what mass and charge are. Thus, Russell writes the following about the events physics describes:

All that physics gives us is certain equations giving abstract properties of their changes. But as to what it is that changes, and what it changes from and to—as to this, physics is silent. (Russell 1959: 18)

Continue reading “Russellian Monism (Stanford Encyclopedia of Philosophy)” »

Apr 28, 2024

The 7 Strangest Coincidences in the Laws of Nature

Posted by in categories: information science, physics, space

Get started on your science revolution with Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

The universe seems to be ruled by equations and numbers. But why just these equations and why just those numbers? Is it just coincidence? In this video I have collected seven of the weirdest coincidences in physics.

Continue reading “The 7 Strangest Coincidences in the Laws of Nature” »

Apr 28, 2024

ETH Zurich’s wheeled-legged robot masters urban terrain

Posted by in categories: information science, robotics/AI

ETH Zurich researchers have developed a locomotor control that can enable wheeled-legged robots to autonomously navigate various urban environments.

The robot was equipped with sophisticated navigational abilities thanks to a combination of machine learning algorithms. It was tested in the cities of Seville, Spain, and Zurich, Switzerland.

With little assistance from humans, the team’s ANYmal wheeled-legged robot accomplished autonomous operations in urban settings at the kilometer scale.

Apr 28, 2024

Google Chrome’s new post-quantum cryptography may break TLS connections

Posted by in categories: encryption, information science, quantum physics

Some Google Chrome users report having issues connecting to websites, servers, and firewalls after Chrome 124 was released last week with the new quantum-resistant X25519Kyber768 encapsulation mechanism enabled by default.

Google started testing the post-quantum secure TLS key encapsulation mechanism in August and has now enabled it in the latest Chrome version for all users.

The new version utilizes the Kyber768 quantum-resistant key agreement algorithm for TLS 1.3 and QUIC connections to protect Chrome TLS traffic against quantum cryptanalysis.

Page 4 of 30012345678Last