Menu

Blog

Archive for the ‘engineering’ category

May 23, 2024

UChicago scientist seeks to make plastic more recyclable

Posted by in categories: engineering, materials

Editor’s note: This story is part of ‘Meet a UChicagoan,’ a regular series focusing on the people who make UChicago a distinct intellectual community. Read about the others here.

When asked to explain the difference between recyclable plastics, Pritzker School of Molecular Engineering graduate student Sam Marsden pulled out a paperclip chain and a length of small strings crudely knotted together.

The paperclip chain represented a highly recyclable plastic like the polyethylene terephthalate, or PET, found in soda bottles and the fibers in clothes. These can be broken down to the molecular level—ie., the individual paperclips—and rebuilt into like-new materials.

May 21, 2024

Functionalization of Polymer Networks for Diverse Applications

Posted by in categories: chemistry, computing, engineering, internet

While silicon has been the go-to material for sensor applications, could polymer be used as a suitable substitute since silicon has always lacked flexibility to be used in specific applications? This is what a recent grant from the National Science Foundation hopes to address, as Dr. Elsa Reichmanis of Lehigh University was recently awarded $550,000 to investigate how polymers could potentially be used as semiconductors for sensor applications, including Internet of Things, healthcare, and environmental applications.

Illustration of an organic electrochemical transistor that could be developed as a result of this research. (Credit: Illustration by by Ella Marushchenko; Courtesy of Reichmanis Research Group)

“We’ll be creating the polymers that could be the building blocks of future sensors,” said Dr. Reichmanis, who is an Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University. “The systems we’re looking at have the ability to interact with ions and transport ionic charges, and in the right environment, conduct electronic charges.”

May 21, 2024

Discovery and engineering of Tsp2Cas9 for genome editing

Posted by in categories: biotech/medical, engineering

Mao, H., Tian, Y., Wang, Z. et al. Discovery and engineering of Tsp2Cas9 for genome editing. Cell Discov 10, 55 (2024). https://doi.org/10.1038/s41421-024-00685-w.

Download citation.

May 21, 2024

New quantum dot approach can enhance electrical conductivity of solar cells

Posted by in categories: engineering, quantum physics, solar power, sustainability

A team led by Professor Jongmin Choi of the Department of Energy Science and Engineering has developed a PbS quantum dot that can rapidly enhance the electrical conductivity of solar cells. The findings are published in the journal Small.

May 20, 2024

Dr Roland Roesch — Director, Innovation and Technology Centre, International Renewable Energy Agency

Posted by in categories: business, climatology, economics, engineering, finance, policy, sustainability

Innovation For A Sustainable Global Energy Transformation — Dr. Roland Roesch, Ph.D. — Director, Innovation and Technology Centre, International Renewable Energy Agency (IRENA)


Dr. Roland Roesch, Ph.D. is Director, Innovation and Technology Centre (IITC), of the International Renewable Energy Agency (IRENA — https://www.irena.org/) where he oversees the Agency’s work on advising member countries in the area of technology status and roadmaps, energy planning, cost and markets and innovation policy frameworks.

Continue reading “Dr Roland Roesch — Director, Innovation and Technology Centre, International Renewable Energy Agency” »

May 19, 2024

Coal fly ash helps cut cement content by half in low-carbon concrete

Posted by in categories: engineering, materials

Concrete beams made using fly ash and pond ash in low-carbon concrete mix met Australian standards for engineering.

May 17, 2024

Deep-sea sponge’s ‘zero-energy’ flow control could inspire new energy efficient designs

Posted by in categories: chemistry, computing, engineering, space

Now, new research reveals yet another engineering feat of this ancient animal’s structure: its ability to filter feed using only the faint ambient currents of the ocean depths, no pumping required.

This discovery of natural ‘“zero energy” control by an international research team co-led by University of Rome Tor Vergata and NYU Tandon School of Engineering could help engineers design more efficient chemical reactors, air purification systems, heat exchangers, hydraulic systems, and aerodynamic surfaces.

In a study published in Physical Review Letters, the team found through extremely high-resolution how the skeletal structure of the Venus flower basket sponge (Euplectella aspergillum) diverts very slow deep sea currents to flow upwards into its central body cavity, so it can feed on plankton and other marine detritus it filters out of the water.

May 17, 2024

The Transcension Hypothesis, John M. Smart, 2011

Posted by in categories: alien life, engineering

Keywords: With sufficiently advanced SETI, we might discover brief broadcasts or occasional episodes of minor galactic engineering occurring in small portions of a very few galaxies. But because of the acceleration of complexification and the vast distances between civilizations, it seems impossible that even an earliest-to-emerge civilization, however oligarchic, could prevent multi-local transcensions in any galaxy. In theory, one can imagine a contrarian civilization releasing interstellar probes, carefully designed not to increase their intelligence (and so, never be able to transcend) as they replicate. But what could such probes do besides extinguish primitive life? They certainly couldn’t prevent multilocal transcensions. There seems no game theoretic value to such a strategy, in a universe dominated by accelerating transcension. Finally, if constrained transcension is the overwhelming norm, we should have much greater success searching for the norm, not the rare exception. As Cirkovic (2008) and Shostak (2010) have recently argued, we need SETI strategies that focus on places where advanced postbiological civilizations are likely to live. In the transcension hypothesis, this injunction would include using optical SETI to discover the galactic transcension zone, and define its outward-growing edge. We should look for rapid and artificial processes of formation of planet-mass black holes, for leakage signals and early METI emanating from life-supporting planets, and for the regular cessation of these signals as or soon after these civilizations enter into their technological singularities.

9.

May 17, 2024

Scientists Test for Quantum Gravity

Posted by in categories: engineering, particle physics, quantum physics

The tension between quantum mechanics and relativity has long been a central split in modern-day physics. Developing a theory of quantum gravity remains one of the great outstanding challenges of the discipline. And yet, no one has yet been able to do it. But as we collect more data, it shines more light on the potential solution, even if some of that data happens to show negative results.

That happened recently with a review of data collected at IceCube, a neutrino detector located in the Antarctic ice sheet, and compiled by researchers at the University of Texas at Arlington. They looked for signs that gravity could vary even a minuscule amount based on quantum mechanical fluctuations. And, to put it bluntly, they didn’t find any evidence of that happening.

Continue reading “Scientists Test for Quantum Gravity” »

May 17, 2024

Rubber-like Stretchable Energy Storage Device Fabricated with Laser Precision

Posted by in categories: chemistry, energy, engineering, wearables

Scientists use laser ablation technology to develop a deformable micro-supercapacitor. Professor Jin Kon Kim and Dr. Keon-Woo Kim from the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH), in collaboration with Dr. Chanwoo Yang and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH), have achieved a significant breakthrough in developing a small-scale energy storage device capable of stretching, twisting, folding, and wrinkling. Their research has been published in the electronic engineering journal, npj Flexible Electronics.

The advent of wearable technology has brought with it a pressing need for energy storage solutions that can keep pace with the flexibility and stretchability of soft electronic devices.

Micro supercapacitors (MSCs) have emerged as a promising candidate for deformable energy storage, due to high-power density, rapid charging, and long cycle life.

Page 1 of 24412345678Last