Toggle light / dark theme

Elon Musk — “In 36 months, the cheapest place to put AI will be space”

How Elon plans to launch a terawatt of GPUs into space.

## Elon Musk plans to launch a massive computing power of 1 terawatt of GPUs into space to advance AI, robotics, and make humanity multi-planetary, while ensuring responsible use and production. ## ## Questions to inspire discussion.

Space-Based AI Infrastructure.

Q: When will space-based data centers become economically superior to Earth-based ones? A: Space data centers will be the most economically compelling option in 30–36 months due to 5x more effective solar power (no batteries needed) and regulatory advantages in scaling compared to Earth.

☀️ Q: How much cheaper is space solar compared to ground solar? A: Space solar is 10x cheaper than ground solar because it requires no batteries and is 5x more effective, while Earth scaling faces tariffs and land/permit issues.

Q: What solar production capacity are SpaceX and Tesla planning? A: SpaceX and Tesla plan to produce 100 GW/year of solar cells for space, manufacturing from raw materials to finished cells in-house.

Astronomers trace a runaway star to a former companion’s supernova

Astronomers have strengthened long-standing predictions that massive runaway stars could have originated in binary pairs, and were dramatically ejected into space when their companion stars underwent supernova explosions. Through a combination of observations and stellar models, a team led by Baha Dinçel at the University of Jena in Germany revealed that the star HD 254577 likely did just this—and that its origins can be tied back to a companion whose remnants now form the Jellyfish nebula. The research is published in Astronomy & Astrophysics.

Magnetism brings structure to a long-mysterious electronic state

Physicists have uncovered surprising order inside one of the most puzzling states in modern materials science. It is a strange middle ground where electrons begin to behave differently, but full superconductivity has not yet taken hold.

Instead of falling into disorder, the system retains coordinated patterns right at the point where normal electrical behavior starts to break down. The finding suggests this transition is guided by an underlying structure, not randomness.

Scientists Announce a Real Warp Drive Is Now Possible

Scientists say a real warp drive may no longer be pure science fiction, thanks to new breakthroughs in theoretical physics. Recent studies suggest space itself could be compressed and expanded, allowing faster-than-light travel without breaking known laws of physics. Unlike sci-fi engines, this concept wouldn’t move a ship through space — it would move space around the ship. Researchers are now exploring how energy, gravity, and exotic matter could make this possible. In this video, we explain how a warp drive could work and how close science really is.

Credit:
Star Wars: Episode VIII — The Last Jedi / Lucasfilm https://www.imdb.com/title/tt2527336/.… Trek Beyond / Paramount Pictures https://www.imdb.com/title/tt2660888/.… Lost in Space / New Line Cinema https://www.imdb.com/title/tt0120738/.… Parker Solar Probe touches the Sun: By NASA/Johns Hopkins APL/Ben Smith — https://svs.gsfc.nasa.gov/14036, https://commons.wikimedia.org/wiki/Fi… Parker Solar Probe: By NASA’s Scientific Visualization Studio — Johns Hopkins University/APL/Betsy Congdon, Johns Hopkins Applied Physics Laboratory/Yanping Guo, Johns Hopkins Applied Physics Laboratory/John Wirzburger, NASA/Nicola Fox, NASA/Kelly Korreck, Johns Hopkins University/APL/Nour Raouafi, NASA/Joseph Westlake, eMITS/Joy Ng, eMITS/Beth Anthony, eMITS/Lacey Young, ADNET Systems, Inc./Aaron E. Lepsch — https://svs.gsfc.nasa.gov/14741, https://commons.wikimedia.org/wiki/Fi… Parker Solar Probe: By NASA/Johns Hopkins APL/Steve Gribben — http://parkersolarprobe.jhuapl.edu/Mu…, https://commons.wikimedia.org/w/index… Vertical Testbed Rocket: By NASA Armstrong Flight Research Center — https://www.nasa.gov/armstrong/, https://commons.wikimedia.org/wiki/Fi… […]cket_(AFRC-2017–11349-1_Masten-COBALT-UnTetheredFLT1).webm Interstellar / Paramount Pictures Stargate / Canal+ CC BY-SA 3.0 https://creativecommons.org/licenses/.… Alcubierre: By AllenMcC., https://commons.wikimedia.org/w/index… Miguel alcubierre: By Jpablo.romero, https://commons.wikimedia.org/w/index… Water wave analogue of Casimir effect: By Denysbondar, https://commons.wikimedia.org/wiki/Fi… Casimir plates: By Emok, https://commons.wikimedia.org/w/index… CC BY-SA 4.0 https://creativecommons.org/licenses/.… Proxima Centauri b: By ESO/Konstantino Polizois/Nico Bartmann — http://www.eso.org/public/unitedkingd…, https://commons.wikimedia.org/wiki/Fi… WARP Reactor Concept Movie: By WarpingSpacetime, https://commons.wikimedia.org/wiki/Fi… Ag Micromirrors: By Simpik, https://commons.wikimedia.org/wiki/Fi… Animation is created by Bright Side.
Star Trek Beyond / Paramount Pictures https://www.imdb.com/title/tt2660888/.
Lost in Space / New Line Cinema https://www.imdb.com/title/tt0120738/.
Parker Solar Probe touches the Sun: By NASA/Johns Hopkins APL/Ben Smith — https://svs.gsfc.nasa.gov/14036, https://commons.wikimedia.org/wiki/Fi
Parker Solar Probe: By NASA’s Scientific Visualization Studio — Johns Hopkins University/APL/Betsy Congdon, Johns Hopkins Applied Physics Laboratory/Yanping Guo, Johns Hopkins Applied Physics Laboratory/John Wirzburger, NASA/Nicola Fox, NASA/Kelly Korreck, Johns Hopkins University/APL/Nour Raouafi, NASA/Joseph Westlake, eMITS/Joy Ng, eMITS/Beth Anthony, eMITS/Lacey Young, ADNET Systems, Inc./Aaron E. Lepsch — https://svs.gsfc.nasa.gov/14741, https://commons.wikimedia.org/wiki/Fi
Parker Solar Probe: By NASA/Johns Hopkins APL/Steve Gribben — http://parkersolarprobe.jhuapl.edu/Mu…, https://commons.wikimedia.org/w/index
Vertical Testbed Rocket: By NASA Armstrong Flight Research Center — https://www.nasa.gov/armstrong/, https://commons.wikimedia.org/wiki/Fi… […]cket_(AFRC-2017–11349-1_Masten-COBALT-UnTetheredFLT1).webm.
Interstellar / Paramount Pictures.
Stargate / Canal+
CC BY-SA 3.0 https://creativecommons.org/licenses/.
Alcubierre: By AllenMcC., https://commons.wikimedia.org/w/index
Miguel alcubierre: By Jpablo.romero, https://commons.wikimedia.org/w/index
Water wave analogue of Casimir effect: By Denysbondar, https://commons.wikimedia.org/wiki/Fi
Casimir plates: By Emok, https://commons.wikimedia.org/w/index
CC BY-SA 4.0 https://creativecommons.org/licenses/.
Proxima Centauri b: By ESO/Konstantino Polizois/Nico Bartmann — http://www.eso.org/public/unitedkingd…, https://commons.wikimedia.org/wiki/Fi
WARP Reactor Concept Movie: By WarpingSpacetime, https://commons.wikimedia.org/wiki/Fi
Ag Micromirrors: By Simpik, https://commons.wikimedia.org/wiki/Fi
Animation is created by Bright Side.

Physicists achieve near-zero friction on macroscopic scales

For the first time, physicists in China have virtually eliminated the friction felt between two surfaces at scales visible to the naked eye. In demonstrating “structural superlubricity,” the team, led by Quanshui Zheng at Tsinghua University, have resolved a long-standing debate surrounding the possibility of the effect. Published in Physical Review Letters, the result could potentially lead to promising new advances in engineering.

When two objects slide over each other, any roughness on their surfaces will almost inevitably resist the motion, creating the force of friction. Yet in 2004, physicists showed that friction can be virtually eliminated between two graphite surfaces, simply by rotating their respective molecular structures.

Named structural superlubricity (SSL), the effect is highly desired by engineers; in principle, allowing them to eliminate wear on both surfaces and minimize energy lost as waste heat.

Exposing Nuclear Magic

Calculations show how the mysterious “magic numbers” that stabilize nuclear structures emerge naturally from nuclear forces—once these are described with appropriate spatial resolution.

Atomic nuclei have been studied for over a century, yet some of nuclear physics’ most basic questions remain unanswered: How many bound combinations of protons and neutrons, or isotopes, can exist? Where do the limits of nuclear existence lie? How are chemical elements synthetized in the Universe? Clues to solving these puzzles lie in the vast phenomenology of nuclear structure—the measured properties of tens of thousands of nuclear states, their decays, and their reactions. In this bedlam of information, patterns and irregularities in data provide crucial hints. One such irregularity was spotted as early as 1934 [1]: Nuclei containing specific numbers of protons and neutrons (2, 8, 20, 28, 50, 82…) are unexpectedly stable. These “magic numbers” (Fig.

Machine learning accelerates plasma mirror design for high-power lasers

Plasma mirrors capable of withstanding the intensity of powerful lasers are being designed through an emerging machine learning framework. Researchers in Physics and Computer Science at the University of Strathclyde have pooled their knowledge of lasers and artificial intelligence to produce a technology that can dramatically reduce the time it takes to design advanced optical components for lasers—and could pave the way for new discoveries in science.

High-power lasers can be used to develop tools for health care, manufacturing and nuclear fusion. However, these are becoming large and expensive due to the size of their optical components, which is currently necessary to keep the laser beam intensity low enough not to damage them. As the peak power of lasers increases, the diameters of mirrors and other optical components will need to rise from approximately one meter to more than 10 meters. These would weigh several tons, making them difficult and expensive to manufacture.

Enjoy Some Hopium with These Half-Life 3 Leaks & Rumors

Many fans expected Valve to announce Half-Life 3 in 2025, and Gabe Follower believes the news was delayed, which was the reason the second edition of Half-Life 2: Raising the Bar was postponed: he thinks the book will be out once the game is revealed.

For now, we can get glimpses of HL3 features in the updates to Valve’s Source 2 engine. Based on mentions of HLX in the code, Gabe Follower says that the game will offer dynamic physics and gravitational anomalies, where gravity no longer pulls objects in one direction but can be tied to a point, making objects’ gravitational pulls affect each other.

Characters will now have more accurate hitboxes that adjust to their limbs instead of simple boxes.

Why are Tatooine planets rare? General relativity explains why binary star systems rarely host planets

Astronomers have found thousands of exoplanets around single stars, but few around binary stars—even though both types of stars are equally common. Physicists can now explain the dearth.

Of the more than 4,500 stars known to have planets, one puzzling statistic stands out. Even though nearly all stars are expected to have planets and most stars form in pairs, planets that orbit both stars in a pair are rare.

Of the more than 6,000 extrasolar planets, or exoplanets, confirmed to date—most of them found by NASA’s Kepler Space Telescope and the Transiting Exoplanet Survey Satellite (TESS)—only 14 are observed to orbit binary stars. There should be hundreds. Where are all the planets with two suns, like Tatooine in Star Wars?

Beamline measurements of unstable ruthenium nuclei confirm advanced nuclear models

A novel apparatus at the U.S. Department of Energy’s (DOE) Argonne National Laboratory has made extremely precise measurements of unstable ruthenium nuclei. The measurements are a significant milestone in nuclear physics because they closely match predictions made by sophisticated nuclear models.

“It’s very difficult for theoretical models to predict the properties of complex, unstable nuclei,” said Bernhard Maass, an assistant physicist at Argonne and the study’s lead author. “We have demonstrated that a class of advanced models can do this accurately. Our results help to validate the models.”

Validating the models can build trust in their predictions about astrophysical processes. These include the formation, evolution and explosions of stars where elements are created.

/* */